برای انجام وظایف پیچیدهای مثل نوشتن یونیت تست برای کد پایتون بهتر است از روش پراپمت چند مرحله ای یا chain of thoughts استفاده کنیم. برخلاف یک پرامپت تکی، یک پرامپت چند مرحلهای متن را از GPT
تولید کرده و سپس آن متن را به پرامپتهای بعدی میدهد.
این روش میتواند در مواردی که میخواهید GPT
قبل از پاسخ دادن به موضوع فکر کند یا قبل از انجام کاری ابتدا برای آن برنامهریزی کند، مفید باشد.
در این notebook
، از یک پرامپت ۳ مرحلهای برای نوشتن یونیت تست در Python
استفاده میکنیم که شامل مراحل زیر است:
- توضیح: با دادن یک تابع
Python
، ازGPT
میخواهیم که توضیح دهد تابع چه کاری انجام میدهد و چرا. - برنامهریزی: از
GPT
میخواهیم که مجموعهای از یونیت تستها برای تابع برنامهریزی کند. در اینجا منظور ما از برنامهریزی چیزی شبیه به در نظر گرفتن تست های مختلف برای پوشش دادن حالتهای مختلف است. - اجرا: در نهایت، به
GPT
دستور میدهیم که یونیت تستهایی را بر اساس برنامهریزی انجام شده بنویسد.
نوشتن توابع کمکی #
برای اجرای کدهای زیر ابتدا باید یک کلید API را از طریق پنل کاربری گیلاس تولید کنید. برای این کار ابتدا یک حساب کاربری جدید بسازید یا اگر صاحب حساب کاربری هستید وارد پنل کاربری خود شوید. سپس، به صفحه کلید API بروید و با کلیک روی دکمه “ساخت کلید API” یک کلید جدید برای دسترسی به Gilas API بسازید.
1# imports needed to run the code in this notebook
2import ast # used for detecting whether generated Python code is valid
3import os
4from openai import OpenAI
5
6client = OpenAI(
7 api_key=os.environ.get(("GILAS_API_KEY", "<کلید API خود را اینجا بسازید https://dashboard.gilas.io/apiKey>")),
8 base_url="https://api.gilas.io/v1/" # Gilas APIs
9)
10
11color_prefix_by_role = {
12 "system": "\033[0m", # gray
13 "user": "\033[0m", # gray
14 "assistant": "\033[92m", # green
15}
16
17
18def print_messages(messages, color_prefix_by_role=color_prefix_by_role) -> None:
19 """Prints messages sent to or from GPT."""
20 for message in messages:
21 role = message["role"]
22 color_prefix = color_prefix_by_role[role]
23 content = message["content"]
24 print(f"{color_prefix}\n[{role}]\n{content}")
25
26
27def print_message_delta(delta, color_prefix_by_role=color_prefix_by_role) -> None:
28 """Prints a chunk of messages streamed back from GPT."""
29 if "role" in delta:
30 role = delta["role"]
31 color_prefix = color_prefix_by_role[role]
32 print(f"{color_prefix}\n[{role}]\n", end="")
33 elif "content" in delta:
34 content = delta["content"]
35 print(content, end="")
36 else:
37 pass
نوشتن تابعی برای تولید یونیت تستها #
در زیر تابعی را مشاهده میکنید که کار تولید یونیت تست ها را به عهده دارد.
توجه کنید که چطور این تابع خروجیهای تولید شده توسط GPT
به عنوان ورودی برای مرحله بعدی فراخوانی GPT
استفاده میکند.
لطفا برای درک بهتر عملکرد کد به کامنتهای فارسی داخل کد توجه کنید.
1# example of a function that uses a multi-step prompt to write unit tests
2
3def unit_tests_from_function(
4 function_to_test: str, # Python function to test, as a string
5 unit_test_package: str = "pytest", # unit testing package; use the name as it appears in the import statement
6 approx_min_cases_to_cover: int = 7, # minimum number of test case categories to cover (approximate)
7 print_text: bool = False, # optionally prints text; helpful for understanding the function & debugging
8 explain_model: str = "gpt-4o-mini", # model used to generate text plans in step 1
9 plan_model: str = "gpt-4o-mini", # model used to generate text plans in steps 2 and 2b
10 execute_model: str = "gpt-4o-mini", # model used to generate code in step 3
11 temperature: float = 0.4, # temperature = 0 can sometimes get stuck in repetitive loops, so we use 0.4
12 reruns_if_fail: int = 1, # if the output code cannot be parsed, this will re-run the function up to N times
13) -> str:
14 """Returns a unit test for a given Python function, using a 3-step GPT prompt."""
15
16 # مرحله اول: ارزیابی تابع ورودی و توضیح نحوه عملکرد آن
17
18 explain_system_message = {
19 "role": "system",
20 "content": "You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You carefully explain code with great detail and accuracy. You organize your explanations in markdown-formatted, bulleted lists.",
21 }
22 explain_user_message = {
23 "role": "user",
24 "content": f"""Please explain the following Python function. Review what each element of the function is doing precisely and what the author's intentions may have been. Organize your explanation as a markdown-formatted, bulleted list.
25 ```python
26 {function_to_test}
27 ```""",
28 }
29
30 explain_messages = [explain_system_message, explain_user_message]
31 if print_text:
32 print_messages(explain_messages)
33
34 explanation_response = client.chat.completions.create(model=explain_model,
35 messages=explain_messages,
36 temperature=temperature,
37 stream=True)
38
39 explanation = ""
40 for chunk in explanation_response:
41 delta = chunk.choices[0].delta
42 if print_text:
43 print_message_delta(delta)
44 if "content" in delta:
45 explanation += delta.content
46 explain_assistant_message = {"role": "assistant", "content": explanation}
47
48 # مرحله دوم: برنامه ریزی برای تولید چندین یونیت تست بر اساس کد تابع و توضیحات تولید شده در مرحله قبل
49
50 # Asks GPT to plan out cases the units tests should cover, formatted as a bullet list
51 plan_user_message = {
52 "role": "user",
53 "content": f"""A good unit test suite should aim to:
54 - Test the function's behavior for a wide range of possible inputs
55 - Test edge cases that the author may not have foreseen
56 - Take advantage of the features of `{unit_test_package}` to make the tests easy to write and maintain
57 - Be easy to read and understand, with clean code and descriptive names
58 - Be deterministic, so that the tests always pass or fail in the same way
59
60 To help unit test the function above, list diverse scenarios that the function should be able to handle (and under each scenario, include a few examples as sub-bullets).""",
61 }
62
63 plan_messages = [
64 explain_system_message,
65 explain_user_message,
66 explain_assistant_message,
67 plan_user_message,
68 ]
69
70 if print_text:
71 print_messages([plan_user_message])
72 plan_response = client.chat.completions.create(model=plan_model,
73 messages=plan_messages,
74 temperature=temperature,
75 stream=True)
76
77 plan = ""
78 for chunk in plan_response:
79 delta = chunk.choices[0].delta
80 if print_text:
81 print_message_delta(delta)
82 if "content" in delta:
83 explanation += delta.content
84 plan_assistant_message = {"role": "assistant", "content": plan}
85
86 # مرحله ۲-۲: اگر توضیحات تولید شده خیلی کوتاه است از مدل میخواهیم که کار خود را مجددا انجام دهد. برای بررسی میزان توضیحات تعداد بولت پوینت های تولید شده را میشماریم.
87
88 num_bullets = max(plan.count("\n-"), plan.count("\n*"))
89 elaboration_needed = num_bullets < approx_min_cases_to_cover
90 if elaboration_needed:
91 elaboration_user_message = {
92 "role": "user",
93 "content": f"""In addition to those scenarios above, list a few rare or unexpected edge cases (and as before, under each edge case, include a few examples as sub-bullets).""",
94 }
95 elaboration_messages = [
96 explain_system_message,
97 explain_user_message,
98 explain_assistant_message,
99 plan_user_message,
100 plan_assistant_message,
101 elaboration_user_message,
102 ]
103 if print_text:
104 print_messages([elaboration_user_message])
105
106 elaboration_response = client.chat.completions.create(model=plan_model,
107 messages=elaboration_messages,
108 temperature=temperature,
109 stream=True)
110
111 elaboration = ""
112 for chunk in elaboration_response:
113 delta = chunk.choices[0].delta
114 if print_text:
115 print_message_delta(delta)
116 if "content" in delta:
117 explanation += delta.content
118 elaboration_assistant_message = {"role": "assistant", "content": elaboration}
119
120 # مرحله سوم: تولید یونیت تست ها بر اساس خروجی مرحله قبل
121
122 # create a markdown-formatted prompt that asks GPT to complete a unit test
123 package_comment = ""
124 if unit_test_package == "pytest":
125 package_comment = "# below, each test case is represented by a tuple passed to the @pytest.mark.parametrize decorator"
126 execute_system_message = {
127 "role": "system",
128 "content": "You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You write careful, accurate unit tests. When asked to reply only with code, you write all of your code in a single block.",
129 }
130 execute_user_message = {
131 "role": "user",
132 "content": f"""Using Python and the `{unit_test_package}` package, write a suite of unit tests for the function, following the cases above. Include helpful comments to explain each line. Reply only with code, formatted as follows:
133
134 ```python
135 # imports
136 import {unit_test_package} # used for our unit tests
137 {{insert other imports as needed}}
138
139 # function to test
140 {function_to_test}
141
142 # unit tests
143 {package_comment}
144 {{insert unit test code here}}
145 ```""",
146 }
147
148 execute_messages = [
149 execute_system_message,
150 explain_user_message,
151 explain_assistant_message,
152 plan_user_message,
153 plan_assistant_message,
154 ]
155
156 if elaboration_needed:
157 execute_messages += [elaboration_user_message, elaboration_assistant_message]
158
159 execute_messages += [execute_user_message]
160 if print_text:
161 print_messages([execute_system_message, execute_user_message])
162
163 execute_response = client.chat.completions.create(model=execute_model,
164 messages=execute_messages,
165 temperature=temperature,
166 stream=True)
167
168 execution = ""
169 for chunk in execute_response:
170 delta = chunk.choices[0].delta
171 if print_text:
172 print_message_delta(delta)
173 if delta.content:
174 execution += delta.content
175
176 # check the output for errors
177 code = execution.split("```python")[1].split("```")[0].strip()
178 try:
179 # پارس کردن کد تولید شده برای اینکه از صحت سینتکس آن مطمپن شویم
180
181 ast.parse(code)
182 except SyntaxError as e:
183 print(f"Syntax error in generated code: {e}")
184 if reruns_if_fail > 0:
185 print("Rerunning...")
186 return unit_tests_from_function(
187 function_to_test=function_to_test,
188 unit_test_package=unit_test_package,
189 approx_min_cases_to_cover=approx_min_cases_to_cover,
190 print_text=print_text,
191 explain_model=explain_model,
192 plan_model=plan_model,
193 execute_model=execute_model,
194 temperature=temperature,
195 reruns_if_fail=reruns_if_fail
196 - 1, # decrement rerun counter when calling again
197 )
198
199 # return the unit test as a string
200 return code
1example_function = """def pig_latin(text):
2 def translate(word):
3 vowels = 'aeiou'
4 if word[0] in vowels:
5 return word + 'way'
6 else:
7 consonants = ''
8 for letter in word:
9 if letter not in vowels:
10 consonants += letter
11 else:
12 break
13 return word[len(consonants):] + consonants + 'ay'
14
15 words = text.lower().split()
16 translated_words = [translate(word) for word in words]
17 return ' '.join(translated_words)
18"""
19
20unit_tests = unit_tests_from_function(
21 example_function,
22 approx_min_cases_to_cover=10,
23 print_text=True
24)
[system]
You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You carefully explain code with great detail and accuracy. You organize your explanations in markdown-formatted, bulleted lists.
[user]
Please explain the following Python function. Review what each element of the function is doing precisely and what the author's intentions may have been. Organize your explanation as a markdown-formatted, bulleted list.
def pig_latin(text):
def translate(word):
vowels = 'aeiou'
if word[0] in vowels:
return word + 'way'
else:
consonants = ''
for letter in word:
if letter not in vowels:
consonants += letter
else:
break
return word[len(consonants):] + consonants + 'ay'
words = text.lower().split()
translated_words = [translate(word) for word in words]
return ' '.join(translated_words)
[user]
A good unit test suite should aim to:
- Test the function's behavior for a wide range of possible inputs
- Test edge cases that the author may not have foreseen
- Take advantage of the features of `pytest` to make the tests easy to write and maintain
- Be easy to read and understand, with clean code and descriptive names
- Be deterministic, so that the tests always pass or fail in the same way
To help unit test the function above, list diverse scenarios that the function should be able to handle (and under each scenario, include a few examples as sub-bullets).
[user]
In addition to those scenarios above, list a few rare or unexpected edge cases (and as before, under each edge case, include a few examples as sub-bullets).
[system]
You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You write careful, accurate unit tests. When asked to reply only with code, you write all of your code in a single block.
[user]
Using Python and the `pytest` package, write a suite of unit tests for the function, following the cases above. Include helpful comments to explain each line. Reply only with code, formatted as follows:
# imports
import pytest # used for our unit tests
{insert other imports as needed}
# function to test
def pig_latin(text):
def translate(word):
vowels = 'aeiou'
if word[0] in vowels:
return word + 'way'
else:
consonants = ''
for letter in word:
if letter not in vowels:
consonants += letter
else:
break
return word[len(consonants):] + consonants + 'ay'
words = text.lower().split()
translated_words = [translate(word) for word in words]
return ' '.join(translated_words)
# unit tests
# below, each test case is represented by a tuple passed to the @pytest.mark.parametrize decorator
{insert unit test code here}
execute messages: [{'role': 'system', 'content': 'You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You write careful, accurate unit tests. When asked to reply only with code, you write all of your code in a single block.'}, {'role': 'user', 'content': "Please explain the following Python function. Review what each element of the function is doing precisely and what the author's intentions may have been. Organize your explanation as a markdown-formatted, bulleted list.\n\n```python\ndef pig_latin(text):\n def translate(word):\n vowels = 'aeiou'\n if word[0] in vowels:\n return word + 'way'\n else:\n consonants = ''\n for letter in word:\n if letter not in vowels:\n consonants += letter\n else:\n break\n return word[len(consonants):] + consonants + 'ay'\n\n words = text.lower().split()\n translated_words = [translate(word) for word in words]\n return ' '.join(translated_words)\n\n```"}, {'role': 'assistant', 'content': ''}, {'role': 'user', 'content': "A good unit test suite should aim to:\n- Test the function's behavior for a wide range of possible inputs\n- Test edge cases that the author may not have foreseen\n- Take advantage of the features of `pytest` to make the tests easy to write and maintain\n- Be easy to read and understand, with clean code and descriptive names\n- Be deterministic, so that the tests always pass or fail in the same way\n\nTo help unit test the function above, list diverse scenarios that the function should be able to handle (and under each scenario, include a few examples as sub-bullets)."}, {'role': 'assistant', 'content': ''}, {'role': 'user', 'content': 'In addition to those scenarios above, list a few rare or unexpected edge cases (and as before, under each edge case, include a few examples as sub-bullets).'}, {'role': 'assistant', 'content': ''}, {'role': 'user', 'content': "Using Python and the `pytest` package, write a suite of unit tests for the function, following the cases above. Include helpful comments to explain each line. Reply only with code, formatted as follows:\n\n```python\n# imports\nimport pytest # used for our unit tests\n{insert other imports as needed}\n\n# function to test\ndef pig_latin(text):\n def translate(word):\n vowels = 'aeiou'\n if word[0] in vowels:\n return word + 'way'\n else:\n consonants = ''\n for letter in word:\n if letter not in vowels:\n consonants += letter\n else\n break\n return word[len(consonants):] + consonants + 'ay'\n\n words = text.lower().split()\n translated_words = [translate(word) for word in words]\n return ' '.join(translated_words)\n\n\n# unit tests\n# below, eachtest case is represented by a tuple passed to the @pytest.mark.parametrize decorator\n{insert unit test code here}\n```"}]
1print(unit_tests)
# imports
import pytest
# function to test
def pig_latin(text):
def translate(word):
vowels = 'aeiou'
if word[0] in vowels:
return word + 'way'
else:
consonants = ''
for letter in word:
if letter not in vowels:
consonants += letter
else:
break
return word[len(consonants):] + consonants + 'ay'
words = text.lower().split()
translated_words = [translate(word) for word in words]
return ' '.join(translated_words)
# unit tests
@pytest.mark.parametrize('text, expected', [
('hello world', 'ellohay orldway'), # basic test case
('Python is awesome', 'ythonPay isway awesomeway'), # test case with multiple words
('apple', 'appleway'), # test case with a word starting with a vowel
('', ''), # test case with an empty string
('123', '123'), # test case with non-alphabetic characters
('Hello World!', 'elloHay orldWay!'), # test case with punctuation
('The quick brown fox', 'ethay ickquay ownbray oxfay'), # test case with mixed case words
('a e i o u', 'away eway iway oway uway'), # test case with all vowels
('bcd fgh jkl mnp', 'bcday fghay jklway mnpay'), # test case with all consonants
])
def test_pig_latin(text, expected):
assert pig_latin(text) == expected
مطمئن شوید که هر کدی را قبل از استفاده بررسی کنید، زیرا GPT
ممکن است اشتباهات زیادی مرتکب شود (به خصوص در وظایف مبتنی بر کاراکتر مانند این). برای دریافت بهترین نتایج پیشنهاد میدهیم که از قویترین مدل GPT
(در این تاریخ gpt-4o
) استفاده کنید.